Total number of printed pages-11

3 (Sem-2/CBCS) MAT HC 1

2022

MATHEMATICS

(Honours)

Paper : MAT-HC-2016

(Real Analysis)

Full Marks : 80

Time : Three hours

The figures in the margin indicate full marks for the questions.

1. Answer **any ten** questions : 1×10=10

(a) Find the infimum of the set

$$\left\{1 - \frac{(-1)^n}{n} : n \in N\right\}$$

(b) If A and B are two bounded subsets of R, then which one of the following is true?

(i) $sup(A \cup B) = sup\{sup A, sup B\}$ (ii) $sup(A \cup B) = sup A + sup B$

(iii)
$$sup(A \cup B) = sup A \cdot sup B$$

(iv) $sup(A \cup B) = sup A \cup sup B$

(c) There does not exist a rational number
x such that
$$x^2 = 2$$
. (Write True or False)

(d) The set Q of rational numbers is uncountable. (Write True **or** False)

(e) If
$$I_n = \left(0, \frac{1}{n}\right)$$
 for $n \in \mathbb{N}$, then $\bigcap_{n=1}^{\infty} I_n = ?$

(f) The convergence of $\{|x_n|\}$ imply the convergence of $\{x_n\}$.

(Write True or False)

- (g) What are the limit points of the sequence $\{x_n\}$, where $x_n = 2 + (-1)^n$, $n \in \mathbb{N}$?
- (h) If $\{x_n\}$ is an unbounded sequence, then there exists a properly divergent subsequence. (Write True or False)

(i) A convergent sequence of real numbers is a Cauchy sequence.

(Write True **or** False)

(j) If 0 < a < 1 then $\lim_{n \to \infty} a^n = ?$

(k) The positive term series $\sum \frac{1}{n^p}$ is convergent if and only if

- (i) p > 0
- (*ii*) p > 1
- (iii) 0
- (iv) $p \leq 1$

(Write correct one)

- (l) Define conditionally convergent of a series.
- (m) If $\{x_n\}$ is a convergent monotone

sequence and the series $\sum_{n=1}^{\infty} y_n$ is

convergent, then the series $\sum_{n=1}^{\infty} x_n y_n$ is also convergent.

(Write True or False)

3 (Sem-2/CBCS) MAT HC 1/G 3 Contd.

(n) Consider the series $\sum_{n=1}^{\infty} \frac{1}{n^m \left(1 + \frac{1}{n^p}\right)}$

where *m* and *p* are real numbers under which of the following conditions does the above series convergent ?

(i) m > 1

ii)
$$0 < m < 1$$
 and $p > 1$

(iii) $0 \le m \le 1$ and $0 \le p \le 1$

(iv) m=1 and p>1

(o) Let $\{x_n\}$ and $\{y_n\}$ be sequences of real

numbers defined by $x_1 = 1$, $y_1 = \frac{1}{2}$,

 $x_{n+1} = \frac{x_n + y_n}{2}$ and $y_{n+1} = \sqrt{x_n y_n} \quad \forall n \in \mathbb{N}$ then which one of the following is true?

- (i) $\{x_n\}$ is convergent, but $\{y_n\}$ is not convergent
- (ii) $\{x_n\}$ is not convergent, but $\{y_n\}$ is convergent

48

- (iii) Both $\{x_n\}$ and $\{y_n\}$ are convergent and $\lim_{n \to \infty} x_n > \lim_{n \to \infty} y_n$
- (iv) Both $\{x_n\}$ and $\{y_n\}$ are convergent and $\lim_{n \to \infty} x_n = \lim_{n \to \infty} y_n$
- 2. Answer **any five** parts : 2×5=10
 - (a) If a and b are real numbers and if a < b, then show that $a < \frac{1}{2}(a+b) < b$.
 - (b) Show that the sequence $\left\{\frac{2n-7}{3n+2}\right\}$ is bounded.
 - (c) If $\{x_n\}$ converges in \mathbb{R} , then show that $\lim_{n \to \infty} x_n = 0$
 - (d) Show that the series 1+2+3+...., is not convergent.
 - (e) Test the convergence of the series :

$$\frac{1}{1^2} - \frac{1}{2^2} + \frac{1}{3^2} - \frac{1}{4^2} + \dots$$

3 (Sem-2/CBCS) MAT HC 1/G 5

- (f) State Cauchy's integral test of convergence.
 - (g) State the completeness property of \mathbb{R} and

find the
$$sup\left\{\frac{1}{n}:n\in\mathbb{N}\right\}$$
.

- (h) Does the Nested Interval theorem hold for open intervals ? Justify with a counter example.
- 3. Answer **any four** parts : 5×4=20
 - (a) If x and y are real numbers with x < y, then prove that there exists a rational number r such that x < r < y.
 - (b) Show that a convergent sequence of real numbers is bounded.
 - (c) Prove that $\lim_{n \to \infty} \left(n^{\frac{1}{n}} \right) = 1$.
 - (d) $\{x_n\}$ be a sequence of real numbers that converges to x and suppose that $x_n \ge 0$. Show that the sequence $\{\sqrt{x_n}\}$ of positive square roots converges and $\lim_{n\to\infty} \sqrt{x_n} = \sqrt{x}$.

- (e) Show that every absolutely convergent series is convergent. Is the converse true? Justify. 4+1=5
 - (f) Using comparison test, show that the series $\sum \left(\sqrt{n^4 + 1} \sqrt{n^4 1}\right)$ is convergent.
 - (g) State Cauchy's root test. Using it, test the convergence of the series

$$\left(\frac{2^2}{1^2} - \frac{2}{1}\right)^{-1} + \left(\frac{3^3}{2^3} - \frac{3}{2}\right)^{-2} + \left(\frac{4^4}{3^4} - \frac{4}{3}\right)^{-3} + \dots$$

1+4=5

(h) Show that the sequence defined by the recursion formula

$$u_{n+1} = \sqrt{3u_n}, \ u_1 = 1$$

 $lim x_n = lim y_n + lim x_n$

is monotonically increasing and bounded. Is the sequence convergent ? 2+2+1=5

3 (Sem-2/CBCS) MAT HC 1/G 7

4. Answer any four parts: $10 \times 4 = 40$ (a) Show that the sequence $\left\{ \left(1 + \frac{1}{n}\right)^n \right\}$ is convergent and $\lim_{n \to \infty} \left(1 + \frac{1}{n}\right)^n = e$ which

lies between 2 and 3.

(b) (i) Let $\{x_n\}$, $\{y_n\}$ and $\{z_n\}$ are sequences of real numbers such that $x_n \leq y_n \leq z_n$ for all $n \in \mathbb{N}$ and $\lim_{n \to \infty} x_n = \lim_{n \to \infty} z_n$.

Show that $\{y_n\}$ is convergent and $\lim_{n \to \infty} x_n = \lim_{n \to \infty} y_n = \lim_{n \to \infty} z_n \qquad 5$

A STATES CBCS MAT HC L/G ' 8

(ii) What is an alternating series ? State Leibnitz's test for alternating series. Prove that the series 1-1/2+1/3-1/4+....∞ is a conditionally convergent series. 1+1+3=5
(c) Test the convergence of the series 1+a+a²+....+aⁿ+.....

(d) (i) Using Cauchy's condensation test, discuss the convergence of the

series
$$\sum_{n=2}^{\infty} \frac{1}{n(\log n)^p}$$

(ii) Define Cauchy sequence of real numbers. Show that the sequence

State

5

$$\left\{\frac{1}{1!} + \frac{1}{2!} + \frac{1}{3!} + \dots + \frac{1}{n!}\right\} \quad \text{is} \quad \text{a}$$

Cauchy sequence. 1+4=5

 (i) Show that a convergent sequence of real numbers is a Cauchy sequence.

(ii) Using Cauchy's general principle of convergence, show that the sequence $\left\{1+\frac{1}{2}+\dots+\frac{1}{n}\right\}$ is not convergent. 5

(f) (i) Prove that every monotonically increasing sequence which is bounded above converges to its least upper bound. 5

9

3 (Sem-2/CBCS) MAT HC 1/G

(e)

(ii) Show that the limit if exists of a convergent sequence is unique.

(g) State and prove p-series.

(h) (i) Test the convergence of the series

$$x + \frac{3}{5}x^{2} + \frac{8}{10}x^{3} + \dots + \frac{n^{2} - 1}{n^{2} + 1}x^{n} + \dots (x > 0)$$

5

5

(ii) If $\{x_n\}$ is a bounded increasing sequence then show that $\lim_{n \to \infty} x_n = \sup\{x_n\} \qquad 5$

(i) (i) Show that a bounded sequence of real numbers has a convergent subsequence. 5

(ii) State and prove Nested Interval theorem. 5

(j) (i) Show that Cauchy sequence of real numbers is bounded. 5

(ii) Test the convergence of the series

 $x^{2} + \frac{2^{2}}{3.4}x^{4} + \frac{2^{2}.4^{2}}{3.4.5.6}x^{6} + \frac{2^{2}.4^{2}.6^{2}}{3.4.5.6.7.8}x^{8} + \dots (x > 0)$ 5

3 (Sem-2/CBCS) MAT HC 1/G 11

3000