Total number of printed pages-7

3 (Sem-4/CBCS) MAT HC 2

2022

MATHEMATICS

(Honours)
Paper : MAT-HC-4026
(Numerical Methods)
Full Marks : 60
Time : Three hours
The figures in the margin indicate full marks for the questions.

1. Answer any seven questions : $1 \times 7=7$
(a) What do you mean by an algorithm ?
(b) What is the underlying theorem of bisection method?
(c) Write the iterative formula of secant method for solving an equation $f(x)=0$.
(d) Consider the system of equations $A x=b$. In which method, the matrix A can be decomposed into the product of two triangular matrices ?
(e) Name one iterative method for solving a system of linear equations.
(f) Write the iterative formula of NewtonRaphson method to find the square root of 15 .
(g) What do you mean by interpolating polynomial?
(h) Show that $\Delta=E-1$.
(i) What do you mean by numerical differentiation?
(j) Write the formula for second order central difference approximation to the first derivative.
2. Answer any four questions : $2 \times 4=8$
(a) Examine whether the fixed point iteration method is applicable for finding the root of the equation :

$$
2 x=\sin x+5
$$

(b) Define rate of convergence and order of convergence of a sequence.
(c) Prove that $\mu=\left(1+\frac{\delta^{2}}{4}\right)^{1 / 2}$ where μ and δ are average and central difference operators.
(d) Verify that the following equation has a root on the interval $(0,1)$:

$$
f(x)=\ln (1+x)-\cos x=0 .
$$

(e) If $P_{1}(x)=a_{0}+a_{1} x$ such that $P_{1}\left(x_{0}\right)=f_{0}$ and $P_{1}\left(x_{1}\right)=f_{1}$, then obtain an expression for $P_{1}(x)$ in terms of x_{i}^{\prime} 's and $f_{i}^{\prime} \mathrm{s}(i=0,1)$.
(f) Show that $\delta=\nabla(1-\nabla)^{-\frac{1}{2}}$.
(g) What do you mean by degree of precision of a quadrature rule ? If a quadrature rule $I_{n}(f)$ integrates $1, x, x^{2}$ and x^{3} exactly, buit fails to integrate x^{4} exactly, then what will be the degree of precision of $I_{n}(f)$?
(h) Mention briefly about the use of Euler's method.
3. Answer any three questions : $5 \times 3=15$
(a) Give a brief sketch of the method of false position.
(b) Give the geometrical interpretation of Newton-Raphson method.
(c) Construct an algorithm for the secant method.
(d) Show that an $L U$ decomposition is unique up to scaling by a diagonal matrix.
(e) Discuss about the advantages and disadvantages of Lagrange's form of interpolating polynomial.
(f) Given $f(2)=4, f(2.5)=5.5$, find the linear interpolating polynomial using Lagrange's interpolation. Hence find an approximate value of $f(2.2)$.
(g) Derive the closed Newton-Cotes quadrature formula corresponding to $n=1$. Why is this formula called trapezoidal rule?
(h) Evaluate $\int_{0}^{1} \tan ^{-1} x d x$ using Simpson's $\frac{1}{3}$ rd rule.
4. Answer any three questions: $\quad 10 \times 3=30$
(a) Perform five iterations of the bisection method to obtain the smallest positive root of the equation :

$$
f(x)=x^{3}-5 x+1=0 .
$$

(b) Apply Newton-Raphson method to determine a root of the equation :

$$
f(x)=\cos x-x e^{x}=0
$$

Taking the initial approximation as $x_{0}=1$, perform five iterations.
(c) Form an $L U$ decomposition of the following matrix :

$$
A=\left(\begin{array}{rrr}
1 & 4 & 3 \\
2 & 7 & 9 \\
5 & 8 & -2
\end{array}\right)
$$

(d) Find the order of convergence of the iterative method $x_{n+1}=\frac{1}{2}\left(x_{n}+\frac{a}{x_{n}}\right)$ to compute an approximation to the square root of a positive real number a. To find the real root of $x^{3}-x-1=0$ near $x=1$, which of the following iteration functions give convergent sequences ?
(i) $x=x^{3}-1$
(ii) $x=\frac{x+1}{x^{2}}$
(e) Construct the difference table for the sequence of values :

$$
f(x)=(0,0,0, \varepsilon, 0,0,0)
$$

where ε is an error. Also show that -
(i) the error spreads and increases in magnitude as the order of differences is increased;
(ii) the errors in each column have binomial coefficients.
(f) Let $x_{0}=-3, x_{1}=0, x_{2}=e$ and $x_{3}=\Pi$. Determine formulas for the Lagrange's polynomials $L_{3,0}(x), L_{3,1}(x), L_{3,2}(x)$ and $L_{3,3}(x)$ associated with the given interpolating points.
(g) For the function $f(x)=\ln x$, approximate $f^{\prime}(3)$ using -
(i) first order forward difference, and
(ii) first order backward difference approximation formulas.
[Starting with step size $h=1$, reduce it by $\frac{1}{10}$ in each step until convergence.]

$$
5+5=10
$$

(h) Solve the initial value problem :

$$
\begin{aligned}
& \frac{d x}{d t}=1+\frac{x}{t}, 1 \leq t \leq 2.5 \\
& x(1)=1,
\end{aligned}
$$

using Euler's method with step size $h=0.5$ and find an approximate value of $x(2.5)$.

