Total number of printed pages-11

3 (Sem-4/CBCS) MAT HC3

2022

MATHEMATICS

(Honours)

Paper : MAT-HC-4036

(Ring Theory)
Full Marks : 80
Time : Three hours
The figures in the margin indicate full marks for the questions.

1. Answer any ten : $1 \times 10=10$
(a) The set Z of integers under ordinary addition and multiplication is a commutative ring with unity 1 . What are the units of Z ?
(b) What is the trivial subring of R ?
(c) What are the elements of $Z_{3}[i]$?
(d) Give the definition of zero divisor.
(e) Give an example of a commutative ring without zero divisors that is not an integral domain.
(f) What is the characteristic of an integral domain?
(g) Why is the idea $\left\langle x^{2}+1\right\rangle$ not prime in $Z_{2}[x]$?
(h) Find all maximal ideals in Z_{8}.
(i) Is the mapping from Z_{5} to Z_{30} given by $x \rightarrow 6 x$ is a ring homomorphism ?
(j) If ϕ is an isomorphism from a ring R onto a ring S, then ϕ^{-1} is an isomorphism from S onto R. Write True or False.
(k) Is the ring $2 z$ isomorphic to the ring $3 z$?
(l) Let $f(x)=x^{3}+2 x+4$ and $g(x)=3 x+2$ is $z_{5}[x]$. Determine the quotient and remainder upon dividing $f(x)$ by $g(x)$.
(m) Why is the polynomial
$3 x^{5}+15 x^{4}-20 x^{3}+10 x+20$
irreducible over Q ?
(n) Give the definition of Euclidean domain.
(o) State the second isomorphism theorem for rings.

3 (Sem-4/CBCS) MAT HC3/G
(a) Define ring. What is the unity of a polynomial ring $Z[x]$?
(b) Prove that in a ring $R,(-a)(-b)=a b$ for all $a, b \in R$.
(c) Prove that set S of all matrices of the form $\left[\begin{array}{ll}a & 0 \\ 0 & b\end{array}\right]$ with a and b, forms a sub-ring of the ring R of all 2×2 matrices having elements as integers.
(d) Let R be a ring with unity 1 . If 1 has infinite order under addition, then the characteristic of R is 0 . If 1 has order n under addition, then prove that the characteristic of R is n.
(e) Let
$z / 4 z=\{0+4 z, 1+4 z, 2+4 z, 3+4 z\}$.
Find $(2+4 z)+(3+4 z)$ and
$(2+4 z)(3+4 z)$.
(f) Let $R=\left\{\left[\begin{array}{ll}a & b \\ b & a\end{array}\right] a, b \in Z\right\}$ and let ϕ be the mapping defined as $\left[\begin{array}{ll}a & b \\ b & a\end{array}\right] \rightarrow a-b$. Show that ϕ is a homomorphism.
(g) Let $f(x)=4 x^{3}+2 x^{2}+x+3$ and $g(x)=3 x^{4}+3 x^{3}+3 x^{2}+x+4$ where $f(x), g(x) \in Z_{5}[x]$. Compute $f(x)+g(x)$ and $f(x) \cdot g(x)$.
(h) Prove that in an integral domain, every prime is an irreducible.
3. Answer any four :
(a) Define a sub-ring. Prove that a nonempty subset S of a ring R is a subring if S is closed under subtraction and multiplication, that is if $a-b$ and $a b$ are in S whenever a and b are in S.

$$
1+4=5
$$

(b) Prove that the ring of Gaussian integers $Z[i]=[a+i b \mid a, b \in Z]$ is an integral domain.
(c) Let R be a commutative ring with unity and let A be an ideal of R. Then prove that R / A is an integral domain if and only if A is prime.
(d) If D is an integral domain, then prove that $D[x]$ is an integral domain.
(e) (i) If R is commutative ring then prove that $\phi(R)$ is commutative, where ϕ is an isomorphism on R.
(ii) If the ring R has a unity $1, S \neq\{0\}$ and $\phi: R \rightarrow S$ is onto, then prove that $\phi(1)$ is the unity of S. 2
(f) Let $f(x) \in Z[x]$. If $f(x)$ is reducible over Q, then prove that it is reducible over Z.
(g) Consider the ring
$S=\left\{\left[\begin{array}{rr}a & b \\ -b & a\end{array}\right] a, b \in Z\right\}$. Show that
$\phi: \mathbb{C} \rightarrow S$ is given by
$\phi(a+b i)=\left[\begin{array}{rr}a & b \\ -b & a\end{array}\right]$ is a ring
isomorphism.
(h) Prove that $Z[i]=\{a+b i \mid a, b \in Z\}$, the ring of Gaussian integers is an Euclidean domain.
4. Answer any four : $10 \times 4=40$
(a) (i) Prove that the set of all continuous real-valued functions of a real variable whose graphs pass through the point $(1,0)$ is a commutative ring without unity under the operation of pointwise addition and multiplication [that is, the operations $(f+g)(a)=f(a)+g(a)$ and $(f \cdot g)(a)=f(a) \cdot g(a)$.
(ii) Prove that if a ring has a unity, it is unique and if a ring element has an inverse, it is unique. 4
(b) Define a field. Is the set I of all integers a field with respect to ordinary addition and multiplication? Let $Q[\sqrt{2}]=\{a+b \sqrt{2} \mid a, b \in Q$. Prove that $Q[\sqrt{2}]$ is a field. $2+1+7=10$
(c) (i) Prove that the intersection of any collection of subrings of a ring R is a sub-ring of R.
(ii) Let R be a commutative ring with unity and let A be an ideal of R. Prove that R / A is a field if A is maximal.
(d) Define factor ring. Let R be a ring and let A be a subring of R. Prove that the set of co-sets $\{r+A \mid r \in R\}$ is a ring under the operation
$(s+A)+(t+A)=(s+t)+A$ and $(s+A)(t+A)=s t+A$ if and only if A is an ideal of R. $1+5+4=10$
(e) (i) Let ϕ be a ring homomorphism from R to S. Prove that the mapping from $R / \operatorname{ker} \phi$ to $\phi(R)$, given by $r+\operatorname{ker} \phi \rightarrow \phi(r)$ is an isomorphism.
(ii) Let R be a ring with unity and the characteristic of R is $n>0$. Prove that R contains a subring isomorphic to Z_{n}. If the characteristic of R is 0 , then prove that R contains a sub-ring isomorphic to $Z . \quad 3+2=5$
(f) Let F be a field and let $p(x) \in F[x]$. Prove that $\langle p(x)\rangle$ is a maximal ideal in $F[x]$ if and only if $p(x)$ is irreducible over F.
(g) Let F be a field and let $f(x)$ and $g(x) \in F[x]$ with $g(x) \neq 0$. Prove that there exists unique polynomials $q(x)$ and $r(x)$ in $F[x]$ such that $f(x)=g(x) q(x)+r(x)$ and either $r(x)=0$ or $\operatorname{deg} r(x)\langle\operatorname{deg} g(x)$. With the help of an example verify the division algorithm for $F[x]$. $7+3=10$
(h) (i) If F is a field, then prove that $F[x]$ is a principal ideal domain. 5
(ii) Let F be a field and let $p(x), a(x)$, $b(x) \in F[x]$. If $p(x)$ is irreducible over F and $p(x) \mid a(x) b(x)$, then prove that $p(x) \mid a(x)$ or $p(x) \mid b(x)$.
(i) Prove that every principal ideal domain is a unique factorization domain.
(j) (i) Prove that every Euclidean domain is a principal ideal domain. 5
(ii) Show that the ring
$z[\sqrt{-5}]=\{a+b \sqrt{-5} \mid a b \in Z\}$
is an integral domain but not a unique factorization domain.

