Total number of printed pages-24

3 (Sem-5/CBCS) MAT HE 1/HE 2/HE 3

2021

(Held in 2022)

MATHEMATICS

(Honours Elective)

Answer the Questions from any one Option.

OPTION-A

Paper : MAT-HE-5016

(Number Theory)

DSE (H)-1

Full Marks : 80

Time : Three hours

The figures in the margin indicate full marks for the questions.

PART-A

1. Choose the correct option : $1 \times 10 = 10$

(i) Two integers a and b are coprime if there exists some integers x, y such that

(a) ax + by = 1

- (b) ax by = 1
 (c) (ax + by)ⁿ = 1
 (d) None of the above
- (ii) Let $d = gcd(a, b), n \in \mathbb{N}$. If $d \mid c$ and (x_0, y_0) is a solution of linear Diophantine equation ax + by = c, then all integral solutions are given by

(a)
$$(x, y) = \left(x_0 + \frac{bn}{d}, y_0 - \frac{an}{d}\right)$$

(b)
$$(x, y) = \left(x_0 - \frac{bn}{d}, y_0 + \frac{an}{d}\right)$$

(c)
$$(x, y) = \left(x_0 + \frac{an}{d}, y_0 - \frac{bn}{d}\right)$$

(d)
$$(x, y) = \left(x_0 - \frac{an}{d}, y_0 + \frac{bn}{d}\right)$$

- (iii) A reduced residue system modulo m is a set of integers r_i such that
 - (a) $[r_i, m] = 1$ (b) $(r_i, m) = 1$ (c) $(r_i, m) \neq 1$ (d) None of the above

3 (Sem-5/CBCS) MAT HE 1/HE 2/HE 3/G 2

- (iv) Suppose that m_j are pairwise relatively prime and a_j are arbitrary integers (j=1, 2, ..., k) then there exist solution x to the simultaneous congruence $x \equiv a_j \pmod{m_j}$, such that x are
 - (a) congruent modulo $M = m_1 . m_2 . m_3 ... m_k$
 - (b) congruent modulo $M = \sum_{j=1}^{k} m_j$
 - (c) congruent modulo m_i
 - (d) Both (a) and (b)
- (v) The product of four consecutive positive integers is divisible by
 - (a) 20(b) 22
 - (c) 24
 - (d) 26

(vi) Euler's ϕ -function of a prime number

- p, i.e., $\phi(p)$ is
 - (a) p
 - (b) p-1
 - (c) $\frac{p}{2} 1$
 - (d) None of the above

3 (Sem-5/CBCS) MAT HE 1/HE 2/HE 3/G 3

(vii) For which value of m,
CRS (mod m) = RRS (mod m)?
(a) If m is a prime

- (b) If m is a composite
- (c) If m < 10
- (d) None of the above

(viii) If $ca \equiv cb \pmod{m}$, then

(a) $a \equiv b \left(mod \frac{m}{(c, m)} \right)$ (b) $a \equiv b (mod m)$

- (c) $a \equiv b \pmod{(c, m)}$
- (d) None of the above
- (ix) The unit place digit of 2^{73} is (a) 4 (b) 6 (c) 8 (d) 2

Answer the following questions :

If p is a prime, then prove that (a) $\phi(p!) = (p-1)\phi((p-1)!)$ 2

 $2 \times 5 = 10$

2

(b) Find all prime number
$$p$$
 such that $p^2 + 2$ is also a prime. 2

(c) For
$$n = p^k$$
, p is a prime, prove that
 $n = \sum_{d|n} \phi(d)$

where $\sum_{d|n}$ denotes the sum over all 2 positive divisors of n.

- Find the number of zeros at the end of (d) the product of first 100 natural 2 numbers.
- (e) Find $\sigma(12)$.

5×4=20 Answer any four questions : 3.

> If ϕ is Euler's phi function, then find (a) 5 $\phi(\phi(1001)).$

Contd. 5 3 (Sem-5/CBCS) MAT HE 1/HE 2/HE 3/G

2.

- (b) Find the remainder, when 30⁴⁰ is divided by 17.
- (c) State and prove Chinese Remainder Theorem.
- (d) If p_n is the *n*th prime number, then prove that

$$p_n < 2^{2^{n-1}}$$
 5

(e) If $n = p_1^{k_1} p_2^{k_2} p_3^{k_3} \dots p_r^{k_r}$ is the prime factorization of n > 1, then prove that

(i)
$$\tau(n) = (k_1 + 1)(k_2 + 1)(k_3 + 1)\dots(k_n + 1)$$

(ii)
$$\sigma(n) = \frac{p_1^{k_1+1} - 1}{p_1 - 1} \times \frac{p_2^{k_2+1} - 1}{p_2 - 1} \times \dots \times \frac{p_r^{k_r+1} - 1}{p_r - 1}$$
$$\frac{2^{1/2} + 2^{1/2} = 5}{2^{1/2}}$$

(f) Define Mobius function. Also show that

$$\mu(m \cdot n) = \mu(m) \cdot \mu(n)$$

Hence find $\mu(6)$. $1+3+1=5$

PART-B

Answer any four questions : $10 \times 4 = 40$ 4. (a) If d = (a, n), prove that the linear congruence $ax \equiv b \pmod{n}$ has a solution if and only if $d \mid b$. 5

3 (Sem-5/CBCS) MAT HE 1/HE 2/HE 3/G 6

- (b) (i) When a number n is divided by 3 it leaves remainder 2. Find the remainder when 3n+6 is divided by 3. 2
 - (ii) Prove that 5n+3 and 7n+4 are coprime to each other for any natural number n. 3
- 5. (a) If p is a prime, then prove that $(p-1)! \equiv -1 \pmod{p}$ 5
 - (b) Using property of congruence show that $41 \text{ divides } 2^{20} 1.$ 5
- 6. (a) Prove that every positive integer (n > 1) can be expressed uniquely as a product of primes.
 - (b) Determine all solutions in the integers of the Diophantine equation 172x + 20y = 1000 5
- 7. (a) If n be any positive integer and can be expressed as $n = p_1^{\alpha_1}, p_2^{\alpha_2}, \dots, p_k^{\alpha_k}$, then

prove that
$$\phi(n) = n \prod_{j=1}^{k} \left(1 - \frac{1}{p_j}\right).$$
 5

3 (Sem-5/CBCS) MAT HE 1/HE 2/HE 3/G 7

If m and n are any two integers such (b) that (m, n) = 1, prove that $\phi(m.n) = \phi(m). \ \phi(n).$ 5

For each positive integer $n \ge 1$, show (a)8. that

$$\sum_{d|n} \mu(d) = \begin{cases} 1, & \text{if } n = 1 \\ 0, & \text{if } n > 1 \end{cases}$$

If k denotes the number of distinct (b)prime factors of positive integer n, then prove that

$$\sum_{d|n} |\mu(d)| = 2^k$$
 5

5

5

(a) Show that $\sum_{ij} \mu(d) \tau(d) = (-1)^k$ 9.

> where k denotes the number of distinct prime factors of positive integers n.

(b) Prove that

> $\tau(n)$ is an odd integer iff n is a (i) perfect square. 3

3 (Sem-5/CBCS) MAT HE 1/HE 2/HE 3/G

(ii) For any integer $n \ge 3$, show that

$$\sum_{k=1}^n \mu(k!) = 1.$$

10. (a) Let p be an odd prime. Show that the congruence $x^2 \equiv -1 \pmod{p}$ has a solution if and only if $p \equiv 1 \pmod{4}$.

(b) If $n \ge 1$ and gcd(a, n) = 1, then prove that $a^{\phi(n)} \equiv 1 \pmod{n}$. 5

11. (a) If n is a positive integer and p is a prime, then prove that the exponent of the highest power of p that divides n!

is
$$\sum_{k=1}^{\infty} \left[\frac{n}{p^k} \right]$$
. 5

(b) Solve $3[x] = x + 2\{x\}$ where [x] denotes greatest integer $\leq x$ and $\{x\}$ denotes the fractional part of x. 5

3 (Sem-5/CBCS) MAT HE 1/HE 2/HE 3/G 9