Total number of printed pages-24

3 (Sem-5/CBCS) MAT HE 1/HE 2/HE 3

2021
(Held in 2022)

MATHEMATICS

(Honours Elective)
Answer the Questions from any one Option.

OPTION-A

Paper : MAT-HE-5016
(Number Theory)
DSE (H)-1
Full Marks : 80
Time : Three hours
The figures in the margin indicate full marks for the questions.

PART-A

1. Choose the correct option : $1 \times 10=10$
(i) Two integers a and b are coprime if there exists some integers x, y such that
(a) $a x+b y=1$

Contd.
(b) $\quad a x-b y=1$
(c) $(a x+b y)^{n}=1$
(d) None of the above
(ii) Let $d=\operatorname{gcd}(a, b), n \in \mathbb{N}$. If $d \mid c$ and $\left(x_{0}, y_{0}\right)$ is a solution of linear Diophantine equation $a x+b y=c$, then all integral solutions are given by
(a) $(x, y)=\left(x_{0}+\frac{b n}{d}, y_{0}-\frac{a n}{d}\right)$
(b) $(x, y)=\left(x_{0}-\frac{b n}{d}, y_{0}+\frac{a n}{d}\right)$
(c) $(x, y)=\left(x_{0}+\frac{a n}{d}, y_{0}-\frac{b n}{d}\right)$
(d) $(x, y)=\left(x_{0}-\frac{a n}{d}, y_{0}+\frac{b n}{d}\right)$
(iii) A reduced residue system modulo m is a set of integers r_{i} such that
(a) $\left[r_{i}, m\right]=1$
(b) $\quad\left(r_{i}, m\right)=1$
(c) $\left(r_{i}, m\right) \neq 1$
(d) None of the above
(iv) Suppose that m_{j} are pairwise relatively prime and a_{j} are arbitrary integers $(j=1,2, \ldots k)$ then there exist solution x to the simultaneous congruence $x \equiv a_{j}\left(\bmod m_{j}\right)$, such that x are
(a) congruent modulo

$$
M=m_{1} \cdot m_{2} \cdot m_{3} \ldots m_{k}
$$

(b) congruent modulo $M=\sum_{j=1}^{k} m_{j}$
(c) congruent modulo m_{i}
(d) Both (a) and (b)
(v) The product of four consecutive positive integers is divisible by
(a) 20
(b) 22
(c) 24
(d) 26
(vi) Euler's ϕ-function of a prime number p, i.e., $\phi(p)$ is
(a) p
(b) $p-1$
(c) $\frac{p}{2}-1$
(d) None of the above

Contd.
(vii) For which value of m,
$\operatorname{CRS}(\bmod m)=\operatorname{RRS}(\bmod m) ?$
(a) If m is a prime
(b) If m is a composite
(c) If $m<10$
(d) None of the above
(viii) If $c a \equiv c b(\bmod m)$, then
(a) $a \equiv b\left(\bmod \frac{m}{(c, m)}\right)$
(b) $a \equiv b(\bmod m)$
(c) $a \equiv b(\bmod m .(c, m))$
(d) None of the above
(ix) The unit place digit of 2^{73} is
(a) 4
(b) 6
(c) 8
(d) 2
2. Answer the following questions :

$$
2 \times 5=10
$$

(a) If p is a prime, then prove that

$$
\begin{equation*}
\phi(p!)=(p-1) \phi((p-1)!) \tag{2}
\end{equation*}
$$

(b) Find all prime number p such that

$$
\begin{equation*}
p^{2}+2 \text { is also a prime. } \tag{2}
\end{equation*}
$$

(c) For $n=p^{k}, p$ is a prime, prove that

$$
n=\sum_{d \mid n} \phi(d)
$$

where $\sum_{d \mid n}$ denotes the sum over all positive divisors of n.2
(d) Find the number of zeros at the end of the product of first 100 natural numbers.
(e) Find $\sigma(12)$
3. Answer any four questions : $\quad 5 \times 4=20$
(a) If ϕ is Euler's phi function, then find $\phi(\phi(1001))$.
(b) Find the remainder, when 30^{40} is divided by 17.
(c) State and prove Chinese Remainder Theorem.
(d) If p_{n} is the nth prime number, then prove that

$$
p_{n}<2^{2^{n-1}}
$$

(e) If $n=p_{1}^{k_{1}} p_{2}^{k_{2}} p_{3}^{k_{3}} \ldots p_{r}^{k_{r}}$ is the prime factorization of $n>1$, then prove that
(i)

$$
\tau(n)=\left(k_{1}+1\right)\left(k_{2}+1\right)\left(k_{3}+1\right) \ldots\left(k_{n}+1\right)
$$

(ii) $\sigma(n)=\frac{p_{1}^{k_{1}+1}-1}{p_{1}-1} \times \frac{p_{2}^{k_{2}+1}-1}{p_{2}-1} \times \ldots \times \frac{p_{r}^{k_{r}+1}-1}{p_{r}-1}$

$$
21 / 2+21 / 2=5
$$

(f) Define Mobius function. Also show that

$$
\mu(m \cdot n)=\mu(m) \cdot \mu(n)
$$

Hence find $\mu(6)$.

$$
1+3+1=5
$$

PART-B

Answer any four questions :

$$
10 \times 4=40
$$

4. (a) If $d=(a, n)$, prove that the linear congruence $a x \equiv b(\bmod n)$ has a

3 (Sem- $5 / \mathrm{CBCS}$) MAT HE $1 / \mathrm{HE} 2 / \mathrm{HE} 3 / \mathrm{C} \quad 6$
(b) (i) When a number n is divided by 3 it leaves remainder 2. Find the remainder when $3 n+6$ is divided by 3.
(ii) Prove that $5 n+3$ and $7 n+4$ are coprime to each other for any natural number n. 3
5. (a) If p is a prime, then prove that

$$
\begin{equation*}
(p-1)!\equiv-1(\bmod p) \tag{5}
\end{equation*}
$$

(b) Using property of congruence show that 41 divides $2^{20}-1$.
6. (a) Prove that every positive integer ($n>1$) can be expressed uniquely as a product of primes.
(b) Determine all solutions in the integers of the Diophantine equation

$$
172 x+20 y=1000
$$

7. (a) If n be any positive integer and can be expressed as $n=p_{1}^{\alpha_{1}} \cdot p_{2}^{\alpha_{2}} \ldots \ldots p_{k}^{\alpha_{k}}$, then prove that $\phi(n)=n \prod_{j=1}^{k}\left(1-\frac{1}{p_{j}}\right)$. 5
(b) If m and n are any two integers such that $(m, n)=1$, prove that

$$
\begin{equation*}
\phi(m \cdot n)=\phi(m) \cdot \phi(n) \tag{5}
\end{equation*}
$$

8. (a) For each positive integer $n \geq 1$, show that

$$
\sum_{d \mid n} \mu(d)=\left\{\begin{array}{lll}
1, & \text { if } & n=1 \tag{5}\\
0, & \text { if } & n>1
\end{array}\right.
$$

(b) If k denotes the number of distinct prime factors of positive integer n, then prove that

$$
\sum_{d \mid n}|\mu(d)|=2^{k}
$$

9. (a) Show that $\sum_{d \mid n} \mu(d) \tau(d)=(-1)^{k}$
where k denotes the number of distinct prime factors of positive integers n.
(b) Prove that
(i) $\tau(n)$ is an odd integer iff n is a perfect square.
(ii) For any integer $n \geq 3$, show that

$$
\begin{equation*}
\sum_{k=1}^{n} \mu(k!)=1 \tag{2}
\end{equation*}
$$

10. (a) Let p be an odd prime. Show that the congruence $x^{2} \equiv-1(\bmod p)$ has a solution if and only if $p \equiv 1(\bmod 4)$.
(b) If $n \geq 1$ and $\operatorname{gcd}(a, n)=1$, then prove that $a^{\phi(n)} \equiv 1(\bmod n)$.
11. (a) If n is a positive integer and p is a prime, then prove that the exponent of the highest power of p that divides n !

$$
\text { is } \sum_{k=1}^{\infty}\left[\frac{n}{p^{k}}\right]
$$

(b) Solve $3[x]=x+2\{x\}$ where $[x]$ denotes greatest integer $\leq x$ and $\{x\}$ denotes the fractional part of x.

Contd.

