Sessional Exam 2025

North Gauhati College

Semester : II (FYUGP)

Subject : Chemistry II

Paper Code: CHE0200104

Total marks: 30			Time:	Time: 1hr 30 mins	
PART A (INORGANIC CHEMISTRY)					
1. What is the cause of unusual high boiling point of NH ₃ and H ₂ O?				1	
2. Why ZnCl ₂ is more covalent than MgCl ₂ ?				2	
		Or			
According to Fajan's Rules, covalent bonding is favoured by which types of cation anions?				of cations and	
3. Using VSEPR theory, predict the geometry of any two of the following molecules:					
a) H ₂ O	b) ClF ₃	c) XeF ₄	d) PCl ₅	1.5x2=3	
4. Draw the molecular orbital energy level diagram and find out the bond order for any one					
of the following molecules?			3+1=4		
a) O ₂		b) CN ⁻			
PART B (ORGANIC CHEMISTRY)					
5. What is the hybrid	lisation state	of the following -	ve carbon atoms:	1	
CH₃-CH-CH	H_3	CH ₂ =CH-CH	${ m H}_2$		
6. What do you mean by K_a value? How does it affect the acidity of an acid?				d? 2	
7. Explain why chloroacetic acid is more acidic than acetic acid?				3	
	Or				
Explain why aromatic amines are less basic than aliphatic amines?				3	

8. Explain the structure of carbocation and arrange the following in increasing order of stability.

3+1=4

PART C (PHYSICAL CHEMISTRY)

- 9. Define extensive and intensive properties. Give one example of each.
- 10. Deduce the relationship between temperature and volume for reversible adiabatic expansion.

TV
$$\gamma$$
-1 = Constant

Or

Six moles of an ideal gas expands isothermally and reversibly from a volume of 1 dm³ to a volume of 10 dm³ at 27 °C. What is the maximum work done?

11. Define Joule-Thomson co-efficient. Deduce the relationship:

$$\mu_{J,T} = -\frac{1}{c_P} \left(\frac{\delta H}{\delta P} \right)_T$$

12. Define Hess's law of constant heat summation. Calculate the standard enthalpy of formation of methane (CH₄) from the following thermochemical reaction:

CH₄ (g) + 2O₂ (g)
$$\longrightarrow$$
 CO₂ (g) + 2H₂O (l)

$$\Delta H^0 = -890.4 \text{ kJmol}^{-1}$$

Give the ΔH^0 for CO₂ (g) and H₂O (g) are -393.7 kjmol $^{\text{-}1}$ and -285.8 kJmol $^{\text{-}1}$ respectively.

1+2=3

1

3

3

Or

Define Kirchoff equation. The enthalpy of reaction (ΔH) for the formation of ammonia according to the reaction $N_2 + 3H_2$ \longrightarrow $2NH_3$ at 27 °C was found to be -91.94 kJ. What will be the enthalpy of the reaction at 50 °C. The molar heat capacities at constant pressure and at 27 °C for N_2 , H_2 and NH_3 are 28.45, 28.32 and 37.07JK⁻¹mol⁻¹ respectively. 1+2=3
