Sessional Exam 2025 North Gauhati College Semester : II (FYUGP) **Subject : Chemistry II** Paper Code: CHE0200104 | Total marks: 30 | | | Time: | Time: 1hr 30 mins | | |---|---------------------|------------------------|---------------------|-------------------|--| | PART A (INORGANIC CHEMISTRY) | | | | | | | 1. What is the cause of unusual high boiling point of NH ₃ and H ₂ O? | | | | 1 | | | 2. Why ZnCl ₂ is more covalent than MgCl ₂ ? | | | | 2 | | | | | Or | | | | | According to Fajan's Rules, covalent bonding is favoured by which types of cation anions? | | | | of cations and | | | 3. Using VSEPR theory, predict the geometry of any two of the following molecules: | | | | | | | a) H ₂ O | b) ClF ₃ | c) XeF ₄ | d) PCl ₅ | 1.5x2=3 | | | 4. Draw the molecular orbital energy level diagram and find out the bond order for any one | | | | | | | of the following molecules? | | | 3+1=4 | | | | a) O ₂ | | b) CN ⁻ | | | | | PART B (ORGANIC CHEMISTRY) | | | | | | | 5. What is the hybrid | lisation state | of the following - | ve carbon atoms: | 1 | | | CH₃-CH-CH | H_3 | CH ₂ =CH-CH | ${ m H}_2$ | | | | 6. What do you mean by K_a value? How does it affect the acidity of an acid? | | | | d? 2 | | | 7. Explain why chloroacetic acid is more acidic than acetic acid? | | | | 3 | | | | Or | | | | | | Explain why aromatic amines are less basic than aliphatic amines? | | | | 3 | | 8. Explain the structure of carbocation and arrange the following in increasing order of stability. 3+1=4 ## PART C (PHYSICAL CHEMISTRY) - 9. Define extensive and intensive properties. Give one example of each. - 10. Deduce the relationship between temperature and volume for reversible adiabatic expansion. TV $$\gamma$$ -1 = Constant Or Six moles of an ideal gas expands isothermally and reversibly from a volume of 1 dm³ to a volume of 10 dm³ at 27 °C. What is the maximum work done? 11. Define Joule-Thomson co-efficient. Deduce the relationship: $$\mu_{J,T} = -\frac{1}{c_P} \left(\frac{\delta H}{\delta P} \right)_T$$ 12. Define Hess's law of constant heat summation. Calculate the standard enthalpy of formation of methane (CH₄) from the following thermochemical reaction: CH₄ (g) + 2O₂ (g) $$\longrightarrow$$ CO₂ (g) + 2H₂O (l) $$\Delta H^0 = -890.4 \text{ kJmol}^{-1}$$ Give the ΔH^0 for CO₂ (g) and H₂O (g) are -393.7 kjmol $^{\text{-}1}$ and -285.8 kJmol $^{\text{-}1}$ respectively. 1+2=3 1 3 3 Or Define Kirchoff equation. The enthalpy of reaction (ΔH) for the formation of ammonia according to the reaction $N_2 + 3H_2$ \longrightarrow $2NH_3$ at 27 °C was found to be -91.94 kJ. What will be the enthalpy of the reaction at 50 °C. The molar heat capacities at constant pressure and at 27 °C for N_2 , H_2 and NH_3 are 28.45, 28.32 and 37.07JK⁻¹mol⁻¹ respectively. 1+2=3 ******